Molecular characterization of a transferable $\text{bla}_{\text{CTX-M-28}}$ gene in clinical isolates of Enterobacter cloacae

Amel Bourouis1, Hela Chihi1, Sihem Mahrouki1, Khaoula Ayari1, Mouhamed Ben Moussa2 and Omrane Belhadj1

1Laboratoire de Biochimie et Technobiologie, Faculté des Sciences de Tunis, université Elmanar II, Tunisie.
2Service de Microbiologie, Hôpital Militaire de Tunis, Tunisie.

Accepted 7 September, 2011

The extended-spectrum beta-lactamase (ESBL) producing phenotype is frequent among Enterobacter cloacae isolates at the Military Hospital of Tunis, Tunisia. We identified the ESBLs of a collection of these strains showing a particular extended-spectrum cephalosporin resistance profile characterized by a higher level of resistance to cefotaxime. These isolates were analyzed by antibiotic susceptibility testing, pI determination, plasmid profiles, transconjugation test, enterobacterial repetitive consensus (ERIC)-PCR and DNA sequencing. All these isolates were found to contain the CTX-M-28 ESBL genes and were multiresistant, producing other β-lactamases type of TEM-1 and OXA-1. ERIC-PCR analysis and conjugation experiments revealed that the dissemination of CTX-M-28 was due to both strain spreading and plasmid diffusion. The detection of CTX-M-28 on a conjugative plasmid is a significant factor for the dissemination of this enzyme. We supposed that the CTX-M-28-encoding plasmid will become an eventual epidemiological problem, by horizontal transfer, in ICU (Intensive Care Unit) of Military hospital in Tunisia.

Key words: β-lactamase, Enterobacter cloacae, cefotaximase, CTX-M-28, enterobacterial repetitive consensus (ERIC)-PCR.

INTRODUCTION

Enterobacter species are a common cause of several human diseases and are predominantly associated with nosocomial infections. They are responsible for 5% of all nosocomial septicemia cases in the United States and can be found as the third most common pathogens recovered from the respiratory tracts of patients in intensive care units (Stock et al., 2001). Among the variety of Enterobacter species, Enterobacter cloacae is a well-recognized nosocomial pathogen that causes significant infections, especially in the last recent years (Haertl et al., 1993). This microorganism is the most commonly isolated member of the Enterobacteriaceae that possess a chromosomally encoded AmpC β-lactamase that plays an important role in resistance to antibiotics (Liu et al., 2004). However, several reports have demonstrated that these species can acquire and express genes encoding extended-spectrum β-lactamase (ESBL) (Szabo et al., 2005). In fact, it has been reported that the wild-type strains of E. cloacae can express the Bush group 2f carbapenemases Nmc-A and IMI-1 (Mimoz et al., 2000; Rasmussen et al., 1996). The resistance to broad-spectrum penicillins and extended-spectrum cephalosporins via the acquisition of plasmids encoding TEM and SHV derivatives extended spectrum beta-lactamase (ESBL) has also been reported (Arpin et al., 2002). Various extended-spectrum β-lactamases not derived from TEM or SHV enzymes have been described in this species, such as SFO type in Japan (Matsumoto and Inoue, 1999), IBC-1 type in Greece (Giakkoupis et al., 2000), VEB-3 type in China (Jian et al., 2005) and CTX-M class that have been described more recently (Lee et al., 2005).

CTX-M β-lactamases are a class of β-lactamases which have been more recently recognized to preferentially hydrolyze cefotaxime and were initially...
reported in the second half of the 1980s. Theses enzymes (cephalosporinases) are a relatively novel family of plasmid-mediated extended-spectrum cephalosporinases and have been classified under Ambler class A (Kingsley et al., 2008). On the basis of their amino acid sequences, the phylogenetic study reveals 5 major groups of acquired CTX-M enzymes: the CTX-M-1 group, the CTX-M-2 group, the CTX-M-8 group, the CTX-M-9 group and the CTX-M-25 group. Despite their structural diversity, most CTX-M β-lactamases have similar hydrolysis profiles (Novais et al., 2008).

Despite the increasing number of reports that studied the ESBL-producing strains throughout the world, few reports of the E. cloacae existing in Tunisia have been published. In this work, we analysed the production of extended spectrum β-lactamase in a multiresistant strains of E. cloacae isolated from different wards in the Military Hospital of Tunis in Tunisia.

MATERIALS AND METHODS

Bacterial strains

A total of 8 cefotaxime-resistant E. cloacae strains are included in this study. These strains were recovered from different wards of the Military Hospital of Tunis from 2005 to 2007, exclusively from the intensive care unit (Table 1). They were identified by using the API 20 E identification system (bioMérieux, Marcy l’Etoile, France).

Susceptibility testing and extended-spectrum β-lactamase detection

The antibiotics susceptibilities of the E. cloacae strains were determined on Muellner-Hinton agar by the standard disk diffusion procedure as described by the Antibiotic Committee of the French Society for Microbiology (www.sfm.asso.fr). The following antibiotics were tested: ampicillin, ticarcillin, cefaclor, cefoxitin, gentamicin, cefepim, cefuroxim, tobramycin, amikacin, cefotaxim, colistin, netilmicin, ceftazidim, imipenem, tetracycline, cloramphenicol, fosfomycin, nalidixic acid, ofloxacin, cotrimoxazol, rifampicin, ticarcillin/ clavulanic acid and amoxicillin/clavulanic acid (Biorad, Marnes-l’Etoile, France).

The ESBL detection was based on the double-disk synergy test (DDST) as described previously (Chouchani et al., 2006). DDST was performed as follows: the surface of a Muellner-Hinton (MH) plate was inoculated with an overnight culture suspension of clinical isolate. After inoculation, disks containing 30 µg of CAZ, CTX, CRO, CEP, and amoxicillin/clavulanic acid (20/10 µg) were placed at distances of 20 mm (centre to centre).

Enhancement of the inhibition zone between the disks containing clavulanic acid and CAZ, CTX, CRO or CEP, indicated the presence of ESBL production.

Polymerase chain reaction (PCR) amplification

Detection of gene sequences coding for β-lactamase enzymes was performed with total deoxyribonucleic acid (DNA). Briefly, bacteria were removed from a plate with an inoculation loop and suspended in 100 µl of sterile deionised water. The cells were lased by heating to 100°C for 10 min and cellular debris was removed by centifugation for 5 min at 14,000 rpm. The supernatant was used as the source of the template for amplification (Dubois et al., 2002). PCR amplification was carried out on a DNA 2720 thermal cycler (AB Applied Biosystems) using the primers listed in Table 2. Cycling conditions were: 34 cycles at 94, 50 and 72°C for 1 min respectively, with a final extension period at 72°C for 10 min. The PCR products were separated in 1.2% agarose gel and visualised with UV. The PCR products were purified using microcolumns of the MicroSpin Sphacyl S-400 purification system (Amersham Biosciences) and sequenced on both strands with the same primers (Eurogentec, France), an automated fluorescent method based on dye terminator chemistry (Ampli Taq DNA polymerase FS Dye Terminator Cycle Sequencing Ready Reaction kit; Applied Biosystems Division, Perkin-Elmer, France), and the ABI-Priom 310 sequencer (Applied Biosystems Division, Perkin-Elmer).

Table 1. Characteristics of extended-spectrum β-lactamase-producing E. cloacae isolates.

<table>
<thead>
<tr>
<th>Isolates</th>
<th>Wards</th>
<th>Date of isolation (day/month/year)</th>
<th>Sample origin</th>
<th>Antibiotype*</th>
<th>β-lactamases content</th>
<th>Pl(s)</th>
<th>Enzymes (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. cloacae S1</td>
<td>Intensive care unit</td>
<td>14/12/05</td>
<td>Axillaire</td>
<td>BLSE, GTNt, Te, SXT</td>
<td>8,6 ; 7,4</td>
<td>CTX-28 ; OXA-1</td>
<td></td>
</tr>
<tr>
<td>E. cloacae S2</td>
<td>Intensive care unit</td>
<td>14/12/05</td>
<td>Rectal</td>
<td>BLSE, GTNt, Te, C</td>
<td>8,6 ; 5,4</td>
<td>CTX-28 ; TEM-1</td>
<td></td>
</tr>
<tr>
<td>E. cloacae S3</td>
<td>Intensive care unit</td>
<td>14/12/05</td>
<td>Axillaire</td>
<td>BLSE, GTNt, Te, SXT,</td>
<td>8,6 ; 7,4</td>
<td>CTX-28 ; OXA-1</td>
<td></td>
</tr>
<tr>
<td>E. cloacae S4</td>
<td>Intensive care unit</td>
<td>14/12/05</td>
<td>Rectal</td>
<td>BLSE, GTNt, Te, C, SXT,</td>
<td>8,6 ; 5,4</td>
<td>CTX-28 ; TEM-1</td>
<td></td>
</tr>
<tr>
<td>E. cloacae S5</td>
<td>Intensive care unit</td>
<td>11/11/06</td>
<td>Hemoculture</td>
<td>BLSE, TNA, SXT,</td>
<td>8,6 ; 5,4 ; 7,4</td>
<td>CTX-28 ; TEM-1 ; OXA-1</td>
<td></td>
</tr>
<tr>
<td>E. cloacae S6</td>
<td>Intensive care unit</td>
<td>27/05/07</td>
<td>Hemoculture</td>
<td>BLSE, GTNt, Te, SXT,</td>
<td>8,6 ; 7,4</td>
<td>CTX-28 ; OXA-1</td>
<td></td>
</tr>
<tr>
<td>E. cloacae S7</td>
<td>Hygiene</td>
<td>06/02/07</td>
<td>PTP</td>
<td>BLSE, GTNt</td>
<td>8,6 ; 7,4</td>
<td>CTX-28 ; OXA-1</td>
<td></td>
</tr>
<tr>
<td>E. cloacae S8</td>
<td>Neonatal</td>
<td>05/12/06</td>
<td>Hemoculture</td>
<td>BLSE, Te, C, SXT,</td>
<td>8,6 ; 5,4</td>
<td>CTX-28 ; TEM-1</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Primers used in this study.

<table>
<thead>
<tr>
<th>Primer (orientation)*</th>
<th>Sequence (5'→3')</th>
<th>Annealing temperatures (°C)</th>
<th>Amplicon Sizes (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>bla<sub>CTX-M</sub></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTX-MA</td>
<td>CGCATTGCGATGTGCGAG</td>
<td>54</td>
<td>539</td>
</tr>
<tr>
<td>CTX-MB</td>
<td>ACCGGATATCGTTGGT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTX-M-1 group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTX-1F</td>
<td>ATGGTTAAAAATCACTGGCTC</td>
<td>60</td>
<td>864</td>
</tr>
<tr>
<td>CTX-1R</td>
<td>TTGGTGACGATTTAGCCGC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bla<sub>TEM</sub></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEM-A2</td>
<td>GTATCCGCTCATGAGACAAAT</td>
<td>54</td>
<td>932</td>
</tr>
<tr>
<td>TEM-ext</td>
<td>GTATATGAGAACTTTGCTG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bla<sub>OXA</sub></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OXA1F</td>
<td>CACAATACATACATCTCGGC</td>
<td>54</td>
<td>793</td>
</tr>
<tr>
<td>OXA1R</td>
<td>GTGTGTTAGATGGATCGC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERIC1</td>
<td>ATGTAAGCTCTGGGATTACAC</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>ERIC2</td>
<td>AAGTAAGTGACTGGGTTGACC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Orientation of each primer: A, A2 and F forward; B, ext and R, reverse.

Conjugation assays were carried out by the filter-mating procedure using the <i>E. coli</i> K-12 Na⁺ Rif⁺ mutant as the recipient. Transconjugants were selected on MH agar containing nalidixic acid (100 µg/ml) and Ticarcillin (100 µg/ml) plus cefotaxime (2 µg/ml). Transconjugants growing on the selection plates were subjected to DDST and IEF to confirm the presence of ESBL phenotype. Samples from the donor and recipient were used as controls. Plasmid DNA was extracted by an alkaline lysis method and analyzed by electrophoresis on 0.8% weight per volume (wt/vol) agarose gels (Promega, France) (Arpin et al., 2005).

Analytical isoelectric focusing (IEF)

IEF was performed in nondenaturing polyacrylamide gel containing ampholines pH range of 3 to 10 at 4°C in an 111Mini IEF cell (Bio-Rad). TEM-1 (pl 5.4), TEM-2 (pl 5.6), TEM-3 (pl 6.3), OXA-1 (pl 7.4), and CTX-M-15 (pl 8.6) were used as pl markers. The β-lactamase activity was detected by the iodine procedure in gel by using benzylpenicillin (30 µg/ml) as the substrate.

RAPD and ERIC-PCR typing

The epidemiological relationships between the 8 strains were analyzed by random amplified polymorphic DNA (RAPD) analysis with primer AP12h and Enterobacterial repetitive intergenic consensus (ERIC) PCR (ERIC-PCR) with primers ERIC2 and ERIC1. The amplification conditions were as follows: 94°C for 5 min and 45 subsequent cycles of 1 min at 94, 37, and 72°C respectively, with a final step at 72°C for 10 min. The amplification products were analyzed by electrophoresis of 20 µl samples on 1.5% agarose gels in the presence of ethidium bromide.

RESULTS

Description of clinical isolates

Eight <i>E. coli</i> strains resistant to cefotaxime were recovered between June, 2005 and August, 2007. All isolates were isolated at the Military hospital of Tunis. The strains were collected from different wards of the Hospital and were associated with various infections (Table 1).

Antibiotic susceptibility testing revealed that all eight isolates were resistant to ticarcillin, ampicillin, cefoxitin, cefalotin, cefuroxim, ceftazidime, cefotaxime, amoxicillin/clavulanic acid, gentamicin (except S5), tobramycin, and netilmicin and trimethoprim/sulfamethoxazole. The isolates remained susceptible to imipenem. The disk diffusion method showed synergy between ceftazidime, cefotaxime, cefepime, and clavulanic acid against all the strains and their transconjugants.

ESBL characterization

All strains included in this study produced an ESBL as detected by the disk synergy test (Table 3). Transconjugants (Tc) producing ESBLs were obtained for all strains except for <i>E. coli</i> S2 and S4 that were isolated from the same origin. The β-lactamase contents of the clinical strains and their transconjugants were first analyzed by isoelectric focusing. All isolates showed a
band with a pI value of 8.6. Also, they presented additional bands consistent with TEM-1 penicillinase with a pI value 5.4 in S2, S4, S5 and S8 or OXA-1 penicillinase with a pI value of 7.4 in S1, S3, S5, S6 and S7.

According to the isoelectric points, PCR experiments were performed using crude DNA extracts from the clinical strains and primers specific for them, CTX-M-type, OXA-type, TEM- or SHV-encoding genes, and then the amplicons were directly sequenced. Sequence analysis demonstrated that all strains of *E. cloacae* contained an identical *bla*_{OXA-1} gene. Alignment of the DNA sequence and of the amino acid sequence of these β-lactamasases against that of CTX-M-28, TEM-1 and OXA-1 was performed (http://prodes.toulouse.inra.fr/multalin/multalin.htm) and the blast of the amino acid sequences of these β-lactamasases were performed (http://www.ncbi.nlm.nih.gov/).

Epidemiological analysis

The strains were first compared with regard to their antibiotic resistance phenotypes. These strains were then typed by AP-PCR and ERIC-PCR using five different primers. Results obtained showed that the eight isolates gave different restriction patterns and can be clustered in four clones (Figure 1). The four *E. cloacae* strains elaborating the CTX-M-28, TEM-1 and OXA-1 enzymes yielded a strictly identical pattern (clone E1). These isolates were recovered in the Intensive care unit and hygiene unit. Two isolates that produced CTX-M-28 and OXA-1 have the same profile and were isolated in the same ward (clone E2). The strain S6 and S8 yielded two distinct Enterobacterial repetitive intergeric consensus sequences PCR patterns.

DISCUSSION

At the Military hospital of Tunis, 8 *E. cloacae* strains were found to be highly resistant to penicillins, the extended spectru cephalosporines (cefotaxime, ceftazidime, ceftriaxone and

<table>
<thead>
<tr>
<th>Isolates</th>
<th>Zone diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AM</td>
</tr>
<tr>
<td>E. cloacaeS1</td>
<td>6</td>
</tr>
<tr>
<td>Trc S1</td>
<td>6</td>
</tr>
<tr>
<td>E. cloacaeS2</td>
<td>6</td>
</tr>
<tr>
<td>Trc S3</td>
<td>6</td>
</tr>
<tr>
<td>E. cloacaeS4</td>
<td>6</td>
</tr>
<tr>
<td>E. cloacaeS5</td>
<td>6</td>
</tr>
<tr>
<td>Trc S5</td>
<td>6</td>
</tr>
<tr>
<td>E. cloacaeS6</td>
<td>6</td>
</tr>
<tr>
<td>Trc S6</td>
<td>6</td>
</tr>
<tr>
<td>E. cloacaeS7</td>
<td>6</td>
</tr>
<tr>
<td>Trc S7</td>
<td>6</td>
</tr>
<tr>
<td>E. cloacaeS8</td>
<td>6</td>
</tr>
<tr>
<td>Trc S8</td>
<td>6</td>
</tr>
</tbody>
</table>

ERIC-PCR profiles obtained with the primer ERIC-2 from *E. cloacae* S1 (lane 2), S2 (lane 3), S3 (lane 4), S4 (Lane 5), S5 (lane 6), S6 (lane 7), S7 (lane 8) and S8 (lane 9). Lane 1 show band patterns of DNA marker fragments (sizes in bp are indicated on the edge of the gel).

Figure 1.

Cefpirome) and to the association amoxicilline-clavulanic acid. Resistance to others antibiotic of these strains was also demonstrated. Analysis of these strains by the disk diffusion test revealed synergies between clavulanic acid and ceftazidime, cefotaxime which suggested the production of an extended-spectrum β-lactamases. By polymerase chain reaction and sequencing, these isolates were found to produce an extended-spectrum β-lactamase, CTX-M-28. All of these strains were multiresistant, producing other β-lactamases type of TEM-1 and OXA-1. Many strains that express CTX-M β-lactamases were multdrug resistant. Genes conferring resistance to aminoglycosides and tetracycline and other bla genes have been found on the same plasmids as the bla_{CTX-M} genes. Genes conferring plasmid-mediated quinolone resistance have also been associated with blaCTX-M genes (Mendonça et al., 2007).

These strains (producing CTX-M-28) were isolated from different wards. On the basis of the antibiotic and the ERIC-PCR results, these isolates differ according to their spicemen. Indeed, six of them were isolated in the Intensive care unit from different origin. Three isolates producing CTX-M-28 and OXA-1 were epidemiologically related. In the same ward, two isolates producing CTX-M-28 and TEM-1 showed the same profil by ERIC-PCR, suggesting probable clonally spread. The strains from the neonatal and hygiene wards were unrelated. However, the CTX-M-28 and OXA-1-producing strains were found to carry very similar *ECORI* and *HindIII* restriction plasmid patterns, thus indicating the diffusion of the same plasmid. The same result was found for the CTX-M-28 and TEM-1-producing strains. Epidemiological studies showed that the dissemination of CTX-M-28 could be the consequence of both strain spreading and plasmid diffusion.

Among the different groups of described ESBLs, nowadays, the production of CTX-M enzymes is an emerging phenomenon that has been called ‘the CTX-M pandemic’ (Abbassi et al., 2008). All our strains harboured the bla_{CTX-M-28} gene of which the first detection was reported by Li et al. (2007). This enzyme differs from bla_{CTX-M-3} by a single nucleotide (A750G) within the PCR amplicon (Kingsley and Verghese, 2008). Compared to other enzymes of the CTX-M-1 group, different acid substitutions were found, among them the Asp240Gly substitution. From molecular modeling studies of class A ESBLs, amino acid substitutions at residue 240 have been associated with expansion of activity towards ceftazidime, most probably because of its position in a key β-strand of the catalytic site of class A β-lactamases (Matagne et al., 1998). These results also appear to represent the in vivo evolution of CTX-M-type β-lactamase genes (Jeong et al., 2005).

In Tunisia, CTX-M-28 enzyme was recently reported in a clinical strain of *Klebsiella pneumoniae* (Achour et al., 2008). According to this study, the CTX-M-28-producing *K. pneumoniae* was obtained from the intensive care unit of the Military hospital in Tunisia. Since, our strains (*E. cloacae*) were recovered from the same ward and in the same hospital; it is possible to suppose the dissemination of the CTX-M-28-encoding plasmid by horizontal transference.
ACKNOWLEDGEMENT

This study was done with the financial support of the Ministry of Scientific Research Technology and Competence Development of Tunisia.

REFERENCES

